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Abstract
Objective To improve the predictability of outcomes in robotic-assisted partial nephrectomy, we utilized three-dimensional 
virtual imaging for SPARE nephrometry scoring. We compared this method with a conventional two-dimensional scoring 
system to determine whether 3D virtual images offer enhanced predictive accuracy for Tetrafecta outcomes.
Methods We retrospectively collected basic information, demographic data, and perioperative indices from patients who 
underwent robot-assisted partial nephrectomy for renal masses at the Department of Urology, First Affiliated Hospital of 
Xi'an Jiaotong University. A three-dimensional visualization system (IPS system, Yorktal) was employed to reconstruct the 
patients' imaging data using AI-based automatic segmentation, resulting in a three-dimensional visualization model (3DVM). 
This model was then imported into the virtual surgical planning software (Touch Viewer System, Yorktal) for automatic 
measurement of the SPARE score. Tetrafecta was defined as a warm ischemic time (WIT) of less than 25 min, negative 
surgical margins, absence of major perioperative complications, and no decline in postoperative renal function. The receiver 
operating characteristic (ROC) curve was utilized to evaluate the sensitivity and specificity of the SPARE score.
Results A total of 141 patients were included in this study, with a mean age of 55.6 ± 11.14 years and a mean tumor size 
of 3.5 ± 1.2 cm. All variables, except for estimated blood loss (EBL) (Coefficient = 0.056, 0.035; P = 0.514, 0.685), showed 
significant correlation with the SPARE score when comparing CT and 3D virtual models (Tetrafecta: Coefficient = 0.408, 
0.56; P < 0.001, < 0.001; WIT: Coefficient = 0.340, 0.237; P < 0.001, 0.007; ΔeGFR: Coefficient = 0.212, 0.257; P = 0.012, 
0.002). The area under the curve (AUC) values from the ROC curves indicated that the 3D virtual model group had signifi-
cantly better performance than the 2D image group for the SPARE score. However, there was no significant difference in 
the ROC curves for the SPARE complexity category between the two imaging modalities (AUC for SPARE category with 
3DVM = 0.658 vs. AUC for SPARE category with CT = 0.643, P = 0.59; AUC for SPARE score with 3DVM = 0.854 vs. 
AUC for SPARE score with CT = 0.755, P < 0.001).
Conclusions The SPARE score combined with 3DVM has a more accurate predictive ability for Tetrafecta of RAPN com-
pared to the traditional 2D SPARE score.

Keywords Robot-assisted partial nephrectomy · Nephrometry scores · 3D virtual imaging

Introduction

Robot-assisted partial nephrectomy has become a main-
stream surgical procedure for resection of T1 renal masses 
due to its minimally invasive advantages [1,2]. Preopera-
tive evaluation of the masses and renal morphology plays 
a key role in guiding the surgery.Currently, the most com-
monly used nephrometry modalities are PADUA score, 
RENAL score, and so on. They can provide several assess-
ment indicators to describe the impact of tumor size and 
location on surgery and evaluate the difficulty of surgery 
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[3,4]. However, these scores are based on two-dimensional 
(2D) images and are inadequate in predicting postoperative 
complications [5].

Traditional morphological scoring of renal masses 
requires surgeons to examine numerous CT scans and 
"reconstruct" the renal mass on each image mentally to 
visualize how the mass relates to the parts of the kidney 
in three dimensions, and then score the mass according 
to the scoring criteria. Often this process can be highly 
subjective and suffers from interobserver variability.With 
the advancement of artificial intelligence algorithms in 
recent years, we have a better approach for image process-
ing of renal masses. The reconstruction software reduct the 
scanned images into a three-dimensional model, which is 
then standardized by computer for evaluation, which can 
improve the accuracy and objectivity of the scoring [6].

In this study, to enhance the predictability of robotic-
assisted partial nephrectomy outcomes, we employed 
three-dimensional virtual images for SPARE nephrom-
etry scoring [7] and compared them with a conventional 
two-dimensional scoring system to assess whether 3D 
virtual images exhibit a more accurate predictive ability 
for Tetrafecta.

Patients and methods

Study design

We collected clinical data from 141 patients who completed 
partial nephrectomy at the First Affiliated Hospital of Xi'an 
Jiaotong University from September 2019 to August 2023, 
as well as their enhanced CT data and performed 3D recon-
struction.All surgical operations are performed by senior 
chief urologists.The aim of this study was to predict surgical 
outcomes, and there were no interventions on surgical pro-
cedures or patients.Ethical approval from our institutional 
ethics committee was not required.

Surgical approach

Robot-assisted partial nephrectomy was performed on all 
patients in this study, with either a transabdominal or retro-
peritoneal approach based on the mass's location. The renal 
artery was occluded with laparoscopic artery clamps, and 
the mass and part of the renal tissue were resected with scis-
sors, creating a wedge resection 0.5–1 cm from the edge of 
the mass, ensuring the mass was resected intact. The collect-
ing system was closed intermittently with 3–0 absorbable 

sutures, while the outer renal parenchyma was closed inter-
mittently with 2–0 absorbable sutures.

3D virtual model reconstruction with SPARE scoring

Automatic measurement of SPARE score. A three-dimen-
sional visualization system ( IPS system, Yorktal)[8]was 
applied to reconstruct the patient image data with auto-
matic AI segmentation to obtain three-dimensional visual-
ization images. The reconstructed 3D visualization images 
were imported into the virtual surgical planning software 
(Touch Viewer System, Yorktal) for automatic measure-
ment of SPARE score.

SPARE scoring indexes: (1) the longest diameter of the 
mass; (2) Exophytic rate of the mass; (3) the location of 
the mass; (4) Whether the mass invades the renal sinus.

SPARE score measurement operation process:
The reconstructed three-dimensional model was 

imported into the virtual surgical planning software, 
where it can be rotated, scaled, and displayed with adjust-
able transparency. The software also allows for automatic 
measurement of both the long and short diameters, as well 
as simulation of cutting and other surgical operations. (1) 
Measurement of short and long diameters: Select and dis-
play the mass to be calculated in the 3D view, click on 
the short and long diameter measurement tool, the system 
automatically calculates and the results are displayed in 
the 3D view. (2) Mass convexity: Select and display the 
mass to be cut in the 3D view, and display the kidney 
where the mass is located at the same time, click on the 
surface cutting tool, and draw a closed curve along the 
edge of the renal parenchyma, the system will automati-
cally generate a plane to divide the mass into two parts, 
and display the volume and the volume of the percentage 
of the mass. (3) Position of the mass: Select and display 
the kidney where the mass is located in the 3D view, and 
click on the long and short diameters measurement tool 
to measure the upper edge of the kidney. The longest dis-
tance between the upper and lower edges of the kidney 
will be measured to determine the location of the mass. 
(4) Whether the mass invades the renal sinus: Select and 
display the kidney and the mass in the 3D view to deter-
mine whether it invades the renal sinus.

All CT scans in this study were performed using high-
definition imaging protocols with a slice thickness of 
1 mm, conducted on a Philips CT scanner (Philips, Best, 
The Netherlands) to ensure high-resolution outputs suit-
able for 3D modeling. We adhere to strict internal quality 
control procedures, where both radiologists and bioengi-
neers review the images to ensure they meet the necessary 
standards for clarity and accuracy Fig. 1.
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Data collection

We collected basic information, demographic data(age, 
sex, body mass index, comorbidities classified accord-
ing to Charlson’s comorbidity index [9] and American 
Society of Anesthesiologists score(ASA) [10]),perioper-
ative-related markers, pathologic data ( the stage accord-
ing to TNM classification [11] and histology and grad-
ing according to the WHO and International Society of 
Urological Pathology [12] (ISUP) classifications), and 
postoperative complication data.Clavien-Dindo classifi-
cation [13] < grade III was considered a mild complica-
tion, and ≥ grade III was considered a severe complication. 
Tetrafecta outcomes were defined as thermal ischemia time 
(WIT) < 25 min, negative surgical margins, no major peri-
operative complications, and no reduction in postoperative 
renal function.SPARE score in 3DVM measured by the 
engineer and doublech-ecked by an experienced urologist 

and the 2D group were scored by two single-blinded urolo-
gists in previously reported methods [14–16].

Statistical analysis

Mean and standard deviation were used to describe continuous 
variables. Categorical variables were described using n(%).
Student's t-test was used to compare means between the two 
groups. Spearman's correlation coefficient was used for cor-
relation analysis between continuous variables, while Kend-
all's correlation coefficient was chosen for correlation analysis 
between continuous and dichotomous variables.Receiver-oper-
ating characteristic curve was used to evaluate the sensitivity 
and specificity of the SPARE score. The delong test was used 
to test whether there was a significant difference between two 
ROC curves. Statistical analysis was performed using SPSS 
software 25.0 and R 4.3.2.

SPARE Polar location Exophytic rate Renal rim Renal sinus Tumour size

2D scan 2 1 1 2 1

3DVM 2 3 2 2 1

SPARE Polar location Exophytic rate Renal rim Renal sinus Tumour size

2D scan 2 2 1 2 1

3DVM 1 3 2 2 2

SPARE Polar location Exophytic rate Renal rim Renal sinus Tumour size

2D scan 2 2 2 2 2

3DVM 2 3 2 2 2

SPARE Polar location Exophytic rate Renal rim Renal sinus Tumour size

2D scan 2 2 1 2 2

3DVM 2 3 2 2 2

Fig. 1  Several cases were used to demonstrate how the SPARE score can be applied to 2D and 3D VMs for assessment, respectively



 World Journal of Urology           (2025) 43:37    37  Page 4 of 7

Results

A total of 141 patients were included in this study. The 
mean age was 55.6 ± 11.14 years. The mean tumor size 
was 3.5 ± 1.2 cm. Median body mass index was 24.5 ± 2.9
。Demographic data and basic clinical information of the 
141 patients are summarized in Table 1.

No positive surgical margins was reported, Preoperative 
eGFR was 101 ± 15.1 ml/min·1.73 m2, Postoperative eGFR 
was 91.2 ± 17.7 ml/min·1.73 m2, ΔeGFR was 9.8 ± 13.3 ml/
min·1.73 m2, Post-operative complications occurred in 20 
(14.2%) patients, of whom 9 (6.4%) classified as major com-
plication (Table 2).

We selected five indices of Renal rim, Renal sinus, Tumour 
size, Exophytic rate, and Polar location.Renal sinus (P < 0.001), 
Tumour size (P < 0.01), and Exophytic rate (P < 0.01) were sig-
nificantly different between the significant differences between 
CT/3DVM groups. In addition, the distributions of SPAREs-
core and SPARE risk category (P < 0.001) based on CT/3DVM 
were also significantly different (Table 3).

Table 4 demonstrates the correlation coefficients and 
their significance between SPARE score in 2D, SPARE 
score in 3D and Tetrafecta, WIT, ∆eGFR, EBL respec-
tively. Kendall correlation coefficients were chosen for 
Tetrafecta, and Spearman correlation coefficients were 
chosen for the other variables. We found that except 
for EBL (Cofficient = 0.056, 0.035; P = 0.514, 0.685), 
the rest of the variables were correlated with SPARE 
score with CT/3DVM (Tetrafecta: Cofficient = 0.408, 
0.56; P < 0.001, < 0.001. WIT:Cofficient = 0.340, 0.237; 
P < 0.001, = 0.007. △eGFR:Cofficient = 0.212, 0.257; 
P = 0.012, 0.002) Fig. 2.

We found that the ROC Curve based on the 3DVM 
imaging group was significantly better than the 2D image 
group in SPARE score, the AUC values of the ROC curves 
are significantly better than 2D image group. (AUC for 
SPARE score with 3DVM = 0.854 vs AUC for SPARE 
score with CT = 0.755, P < 0.001). However, the ROC 
Curve based on the 3DVM and 2D image group in SPARE 
complexity category had no significant difference.(AUC 
for SPARE category with 3DVM = 0.658 vs AUC for 
SPARE category with CT = 0.643, P = 0.59).

Discussion

In the early stages of partial nephrectomy (PN), limita-
tions in imaging technology resulted in suboptimal surgi-
cal outcomes and numerous postoperative complications. 
However, with the widespread adoption of CT imaging, 
PN has emerged as the standard approach for resecting T1 
stage renal masses [17]. Nephrometry scoring systems, 

Table 1  Demographic data and basic clinical information of the 141 
patients

Variables PN

No. patients 141
Age 55.6±11.4
Sex
Male 104（73.8%）
Female 37（26.2%）
BMI 24.5±2.9
ASA
1 4（2.8%）
2 110（78%）
3 27（19.2%）
Tumor location
Left 67（47.5%）
Right 74（52.5%）
Tumor size（cm） 3.5±1.2
Histopathology
Clear cell 119（84.4%）
Papillary 6（4.3%）
Chromophobe 3（2.1%）
Angiomyolipoma 5（3.5%）
Oncocytoma 2（1.4%）
Others 6（4.3%）
Clinical T stage, n (%)
T1a 74（52.5%）
T1b 62（44%）
T2a 2（1.4%）
T2b 0
T3 3（2.1%）

Table 2  Perioperative and pathology-related information

Surgical approach

Transperitoneal 34(24.1％)
Retroperitoneal 107(75.9％)
Warm ischaemia time, min, mean (SD) 21±5.1
Estimated blood loss, mL, mean (SD) 82.3±140.9
ISUP grade, n (%)
Grade 1 5(3.5％)
Grade 2 104(73.8)
Grade 3 8(5.7％)
Grade 4 0
Not applicable 24(17％)
Positive surgical margins, n (%) 0
Preoperative eGFR, ml/min·1.73 m2 101±15.1
Postoperative eGFR, ml/min·1.73 m2 91.2±17.7
ΔeGFR, ml/min·1.73 m2 9.8±13.3
Overall complication 20(14.2％)
Major complication 9(6.4％)
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such as RENAL and PADUA, were developed to evaluate 
renal masses [3,4]. However, these scores, based on CT 
plain images, fall short in predicting postoperative com-
plications [5]. The advent of 3D imaging and modeling 

technology has revolutionized this field [18,19]. CT 3D 
visualization technology provides a clear representation 
of the spatial anatomical relationships between tissues, 
automatically measures relevant parameters of target 
tissues, and assists in precision surgery [20,21]. Con-
sequently, we propose using the 3DVM SPARE scoring 
system for evaluating renal masses, aiming to enhance 
the understanding of renal mass morphology and improve 
the prediction rate of postoperative complications and the 
PN tetrafecta.

Tumor diameter is a crucial factor in several classic 
nephrometry scoring systems, reflecting its relation-
ship with the difficulty of partial nephrectomy (PN) and 
patient prognosis. Larger tumors typically indicate a 
greater volume of kidney tissue that needs to be resected. 
Previous studies have demonstrated a correlation between 
renal mass diameter and long-term renal function after 
PN. However, this correlation seems less reliable when 
the tumor exophytic rate is high [22]. Recent studies 
suggest that long-term renal function after PN depends 
on the number of normal nephrons preserved post-sur-
gery [23,24]. The more endogenous the mass, the more 
nephrons are affected for the same diameter, making 
the mass exophytic rate a critical indicator [25]. How-
ever, assessing the exophytic rate using CT plain images 
is variable due to subjective interpretation by different 
surgeons [26]. In this study, the maximum diameter and 
exophytic rate of the mass were automatically calculated 
using a three-dimensional visualization system (IPS sys-
tem, Yorktal), eliminating inter-observer variability and 
enhancing the score's reliability.

The location of the mass significantly impacts PN. For 
instance, resecting a mass located in the lower pole of the 
kidney via a retroperitoneal approach poses greater suturing 
challenges than resecting a mass in the upper pole due to the 
laparoscope's operational angle. Despite the multiple maneu-
ver angles possible in RAPN, surgeons still face severe com-
plications, such as bleeding and urinary fistula, for masses 
invading the renal sinus or near the renal hilum [27]. Consid-
ering surgical margin [28], the anatomical relationship of the 
mass to the renal vasculature and collecting system is crucial. 
This study found a significant correlation between the score 
and WIT and ΔeGFR, indicating that higher scores reflect a 
closer relationship between the mass and the renal vascular 
and collecting system, correlating with surgical difficulty 
and patient prognosis. The predictive ability for the tetra-
fecta was significantly different between scores based on CT 
scans and those based on 3DVM, suggesting that 3DVM ena-
bles surgeons to more intuitively understand the anatomical 
relationship between the mass and critical kidney structures, 
allowing for more appropriate and precise surgical strategies.

Table 3  SPARE score frequency distributions

SPARE score frequency 2D 3D P

Polar location
 Superior/inferior 80（56.7%） 81（57.4%） 0.7
 Middle 61（43.3%） 60（42.6%）

Exophytic rate
 <50% 75（53.2%） 52（36.9%） 0.01
 ≥50% 53（36.6%） 65（46.1%）
 Endophytic 13（9.2%） 24（17%）

Renal rim
 Lateral 82（58.2%） 89（63.1%） 0.39
 Medial 59（41.8%） 52（36.9%）

Renal sinus
 Not involved 67（47.5%） 28（19.9%） ＜0.001
 Involved 74（52.5%） 113（80.1%

）
Tumour size
 ≤4 cm 102（72.3%） 78（55.3%） 0.01
 4–7 cm 37（26.2%） 59（41.8%）
 >7 cm 2（1.5%） 4（2.9%）

SPARE score
 5 0 1（0.7%） ＜0.001
 6 11（7.8%） 5（3.5%）
 7 30（21.3%） 23（16.3%）
 8 42（29.8%） 28（19.9%）
 9 35（24.8%） 43（30.6%）
 10 18（12.8%） 35（24.8%）
 11 5（3.5%） 5（3.5%）
 12 0 1（0.7%）

SPARE risk category
 Low risk 11（7.8%） 6（4.3%） ＜0.001
 Intermediate risk 107（75.9%） 94（66.7%）
 High risk 23（16.3%） 41（29.1%）

Table 4  Correlation between SPARE score and Tetrafecta, WIT, 
∆eGFR, EBL respectively

SPARE score in 2D SPARE score in 3D

Correlation 
Coefficient

P Correlation 
Coefficient

P

Tetrafecta 0.408 ＜0.001 0.567 ＜0.001
WIT 0.340 ＜0.001 0.237 0.007
△eGFR 0.212 0.012 0.257 0.002
EBL 0.056 0.514 0.035 0.685
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There are some limitations to this study. First, most of the 
renal masses in the patients included in this study were stage 
T1, which does not ensure that the conclusions we drew 
are applicable in stage T2 and more complex renal masses. 
Second, 3DVM is not yet fully available in the clinic, which 
requires surgeons to use specialized software for evaluation. 
Third, this study was conducted in a single high-volume 
referring center, which is not representative of what may 
occur in different healthcare settings.

Conclusion

Due to the ability to visualize the spatial anatomical relation-
ship between tissues and automatically measure the relevant 
parameters of the target tissues, the SPARE score combined 
with 3DVM has a more accurate predictive ability for Tetra-
fecta of RAPN compared to the traditional 2D SPARE score.
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Area Standard Error Asymptotic Significance 95% Wald Confidence Limits Delong test

Complexity category

SPARE With 3DVM 0.658 0.046 0.001 0.568-0.748
P=0.59

SPARE With CT 0.643 0.046 0.003 0.552-0.734

Score

SPARE With 3DVM 0.854 0.033 0.001 0.79-0.917
P 0.001

SPARE With CT 0.755 0.04 0.001 0.677-0.834

Fig. 2  Receiver-operating characteristic (ROC) curve analysis of 
Tetrafecta. A ROC curve analysis of Tetrafecta considering the 
SAPRE complexity categories evaluated via three-dimensional 
virtual models (3D VMs) and two-dimensional (2D) CT standard 

imaging(2D SAPRE complexity category: red line; 3D SAPRE com-
plexity category: blue line). B ROC curve analysis of Tetrafecta con-
sidering the SPARE score evaluated via 3D VMs and 2D CT standard 
imaging (2D SAPRE score: red line; 3D SAPRE score: blue line;)

http://creativecommons.org/licenses/by-nc-nd/4.0/
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